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STRESS ANALYSIS OF BEAMS WITH SHEAR DEFORMATION OF THE FLANGES
By l?AuL KUHN

SUMMARY

The jundamenial action of shear deformdion of the
@nges ?2d%u-ssedon the basisOfsimplifyinga-ssumptinw.
The theoy is developed to the poini of giving ana.1yti-cu.1
solwtion.sfor simple uwtx of beumwand of skbstringer
panels under axiu.1load. Strain-gage twts on a ien.sion
pani%?and on a beam corresponding to i%ae simple cum.s
are describedand the re$ultsare compard &h anu.?yt&d
results. .For wing beanw, an approximde method of
applying the theory is gioen. As an ailernatwe, the
conduction of a mechanical analyzer is adoocated.

INTRODUCTION

The so-called “semimonocoque” type of construction,
which has been favored by aircraft designem for some
time, presents serious diillcukies in strem analyE&
Static testshave proved that the bending action of such
a structure is not alww.ys described with sufficient
accuracy by the standard engineering formulas based
on the assumption that plane cross sections remain
plane. It w-ill be necessary-, therefore, to devise new
working theories for the action of semimonocoque beams
under bending loads.

In order to arrive at reasonably rapid methods of
stress nnalysis, it is neoessary to make rather sweeping
assumptions. It is obvious that the range of applica-
bility of rmy such method is limited. The present
paper concerns itself with beams typical in general
form of one classof beams used in airplane construction,
that is, withfawly shallow,wide beams,h&w$d uwers,
symmetricalaboui the center line, dh two stir webs and
wiih bulkhead-sthat o$er no apgnziu.ble rwistance to
deformation oui of t?wirplanes.

Briefly, the action of such a beam under loads applied
at the shear webs is as follows: The transverse shear is
taken up by the shear webs. The flanges attached to
theseshear webs furnish part of the longitudinal strewss
required to balance the extend bending moment.
The strains set up by these stressesinduce shear streams
in the skin which, in turn, cause longitudinal stressesin
the intermediate stringers attaohed to the skin until
sufficient longitudinal stresses exist at any section to
balance the external bending moment.

If the skin between stringers did not deform under
the action of the shear streams, the standard beam
formulas would apply. The thin sheet, however, has

very little shear stiffness and tiers large deformations
under load. & a rwit, the fit intermediate stringer
next to a show web carries a smaller stress than the
flange of the sheax web, the next intermediate stringer
carries less stress than the first one, and so on to the
center stringer, which carries the smallest stress. This
phenomenon of the interdependence between stringer
stresses and shear deformations forms the subject of
the present paper.

Apparently Dr. Younger was the fit person iu this
cnuptry to give serious attention to this subject. In
reference 1 he gives a formula for the efficiency of a box
beam with walls of uniform thiclmess, which may be
considered as the limiting case of very many extremely
small stringers. Nothing more on the subject was
published until two experimental studies appeared in
1936. Reference 2, dealing with the case of a skin-
stringerpanel in edge compression, includes a theoretical
solution for a particular case. Reference 3 deals with a
box beam in pure bending, a problem identioal with the
one treated in reference 2. In both studirMthe strirger
stresses experimentally obtained were used to compute
efficiency factow for the shear stif?nesaof the sheet.

The most important practical problem is the inverse
of the problem dealt within references 2 and 3; namely,
given the shear stifhwm, to cxilculate the stringer
stresses. The problem is difEcult and complex. In
order to arrive at any solution, it has been necessmy to
use a very much simplified concept of the action of the
structure, as suggested in references 1 and 2. On the
basis of this simplified ooncept, the analytical solutions
for a few very simple cases of axially loaded panels and
of beams are derived in this paper. For other cases,
it will be shown that a trial-and-error method of solution
is feasible.

The analytical solutions as well as the trial-and-error
method apply only to very elementary cases, namely,
to three-stringer panels under axial load and to beams
with a single longitudinal stringer attached at the
center line of the cover sheet. It has besn considered
worth while to devote considerable space to the dis-
cussion of these elementary cases for the following
rwons:

1. The study of these simple cams greatly facilitates
the undemanding of the fundamental principles. (Il.
is very strongly urged that anyone desiring to use the
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proposed method of analyais work, by the trial-and-
error method, at least one example each of a panel under
axial load and of a beam.)

2. The simple cases afford a very convenient way of
experimentally checking the validity of the assumptions
made. Strain-gage tests made for this purpose on a
tension panel and on a beam are described in this paper.

3. The solutions obtained for beams with a single
longitudinal ean be used as checks on the degree of
approximation attainable with the “constant-stress
method” proposed later for analyzing actualwing beams.

h additional reason for the lengthy discussion will
only be mentioned in passing. Under certain condi-
tions, a beam with a single longitudinal stringer may
give useful approsi mations of the streses in a beam
with many stringem. Such a simplifiedsubstitute bemn
makes it possible to obtain some rough ideas on the
influence of bulkheads, an influence that was neglected
in the present discussion.

Two methods are proposed for winglike structures.
One method is the construction of a mechanical ana-
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Iyzer permitting a solution that is “exact” within the
assumptions made. The other method is based on the
mnunption that the structure is so dimensioned as to
approach the ideal design of constant flange stressalong
the span. For this ideal case, the analytical solution
can be obtained. The actual case will have deviations
horn the ideal case, which are tamed “faulta.” Th-we
faults are minimized as much as possible by applying
corrections, and the stresses caused by the corrections
me superposed on the stresses of the ideal case.

SYMMETRICAL THREE-STRINGER PANEL UNDER AX(AL
LOAD

FUNDAMENTALCONSIDERATIONS

The simplest possible structure in which shear
deformation must be taken into accmmt is shown in
figure 1 (a). Tvvo stringem,A and A’, of equal section,
are connected to an intermediate stringer B by means
of a thin sheet C. The upper edge of this sheet is
reinforced by bars D. The stiringeraand the sheet are
attached ta a foundation F.

The important phases of the elastic action of this
structure may be visualized with the help of the
mechanical model sketched in figure 1 (b). This
model represents one-half the structure, which is per-
missible because the structure is symmetrical. Helical
springs represent the stringers A and B and their
elastic resistance to longitudinal deformation. Coil
springs represent the elastic resistance of the sheet to
shear deformation. It is assumed that the stringers
carry only longitudinal stresses and that the sheet
carries only shear stiesses. For the mechanical model
it is assumed that guides prevent any deflection of the
springs other than that for which they are designed.

The stresses reauking from the load P are shown
qualitatively in figure 2. At the top of stringer A the
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stress is UA=P/AA, at the tip of stringer B it iS crB=O.
The shear stmases7 acting on the sheet gradually take
the load out of stringer A. and transfer it to stringer
B. If the panel has suffmient length and if the sheet
has sticient shem stiffness, the stresses U.4and UIIW
be very nearly equal at the root.

EQUATIONSOF TEE PROB~M

The equations governing the problem under the
simpli&ing asmunptions can be very easily set up.
Figure 3 shows a stip of length dx cut from the panel

F.+dF. F~+@=

t L—- b---d t
F. F=

PICTUREX—memmtofP3d.

and separated into its component parts. The equation

of equilibrium gives

dFd=tiO= –dF. (1)

(See list of symbols, appendix A.)
It should be noted that these equations are written

for the structure aa shown in figures 1 (b), 2, and 3,
which is one-half the original structure in figure 1 (a),
so that &is one-half the area of stringer B as shown in
figure 1 (a). The sign convention used throughout this
paper is that tensile forces and stressesare positive and
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that shear forces and stresses in the sheet axe
when caused by positive shsses in the loaded
A (or in the flange F in the case of beams).

WITH SHEAR DEFORMATION OF THE FLANGES 671

positive
stringer

The elastic de~ormation of the structure is shown in
figure 4. Two corresponding points 1 and 2 are dis-
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placed to new positions 1’ and 2’. The total displace-
ments are given by

The shear strain is given by

tiA‘uB.-f=
b

and since

~=;.

where Uais the effective shear modulus, these relations
may be combined into

The last equation may be written

d+(a.-u.)da (2)

Equations (1) and (2) may be combined into a differ-
ential equation (see appendix B) whidh, together with
the boundary conditions, defl.ncs the problem com-
pletely. If there are more stringers, a system of
simultaneous differential equations remdts.

SOLUTIONOF THS EQUATIONS

For the fundamental case of a symmetrical three-
stringer panel of constant cross section, the analytical
solutions are given in appendix B for two cases: The
panel attached to a rigid foundation and loaded at the
free end, and the panel free in space strained by displac-
ing the ends of the stringers a known amount. Com-
bining the two solutions makes it possible to calculate
loaded panels attached to an elastically yielding
foundation.

For the analysis of three-stringer panels in which the
stringer areas and the shear SMMSS of the sheet vary
along the axis, a trial-and-error method has been found
feasible.

3sws—~

The recommended procedure for the trial-and-error
nethod is as follow-s:

Divide the length L of the specimen into a suitable
mmber of bays. Tabulate the average values oft, A.,
md A~ for each bay.

hsnme values for the incremant of shear A& in
~achbay. According to equation (1)

@.=–~~=@

With the assumed VE&XIS of AFA ~d AFB ~d the
mown values F.=~ and FB=O at the end of the panel,
:alculate for all stations along the le@h of the panel
he forces in the stringers and then the stressesin the
kringers. From thesevalues calculate the shearstresses
md the shear forces in the sheet. The method of tabu-
ation is shown in table I. In this example, the values
]f A4, AB, and t are constant and need not be tabulated.

The calculated values of MC w-illnot, in generaJ,agree
withthe originally wwumedvalues. Change the assumed
mlues and repeat the entire process until a satisfactmy
qqeement is reached between the assumed values of
Ma and the calculated ones.

In the choice of the f3rst set of values for A5’c, the
malyst must be guided by previous experience. The
only condition lmown at the outset is

PA,
80<AA+AB

because this is the maximum ~possibleforce that would
be transmittal to stringer B only if the shear deforma-
tion were reduced to zero.

The most di.flicultstep, and the one upon which the
success of the method hingek, is to compare the cal-
culated MC curve with the assumed one and, on the
basis of this comparison, to derive a new curve modiiied
in such a way that the repetition of the entire calculation
will yield a calculated A& curve that agrees with the
assumed one. No general rule can be given concerning
the method beyond stating that decreasing the assumed
tic values at any point will raise the calculated ones and
vice versa. Some practice is necessmy to develop the
skill required for this step. Five trials should be suf6-
cient, in general, to obtain an agreement to 1 or 2 per-
cent for five or six bays unless the variations of areas are
extreme.

It should be emphasized that the method is a trial-
sad-error one and not a method of successive approxi-
mation, i. e., the calculated ASc curve cannot be used
as the assumed curve for the next cycle.

EFFECTIVZSBBAFtSTIJ?FNE9SAND EFFEC~ STRINGEE AREA9

Two quantities m&t be determined before an analysis
cm be started-the effective shear stitlnesses and the
effective stringer areas.

The shear stifiws of a flat sheet is equal to the shear
modulus Q of the material If the sheet buckles into a
diagonal-tension field and the edge members are rigid,
the shear stiflnms is the theoretical shenr stiffims of a
diagonal-tension field G,=%(3 (for duralumin or steel).
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The condition of a pure diagonal-tension field is not
reaohed, however, until the buckling shear stress has

Lw

m.—..--—--
0 0

-—.
—

A /

SeCiion A -A

~Gm h—Trot@

been - considerably ex-
ceeded. Consequently,
values intermediate be-
tween G and %(7 will
ocour at stresses not
too greatly in excess of
the buckling stress (iLe.,
3 to 5 times), provided
that the edge membem
are sufficiently stiff. If
the edge members are
not sticiently stiff or
well braced to take the
transversecomponent of
the diagonal tension and
particularly if the sheet
carrie edge compression
in addition to shear, the
shear stifbess may drop
to very low values.
Values as low as (7.=
O.lGhave been reported
(reference 3); although
the numerical accuracy
of this particular anfd-

. .
cation of what may be expected,
test was stopped long before

. reaching the dtimate load.
Quantitative information on
this subject is scarce. Fortu-
nately, as will be shown later,
the shear stiffnem need not be
very accurately known to obtain
reasonable accuracy in the
stringer stresses.

It is clear that the sheet will
not only aot as a shearmember in
accordance with the theory but
Wiua.lsowistin * loM-
tudinal stresses. The following
assumptions have been used:

1. For a sheet - t~-
sion in addition to shear, it was
assumed that the sheet is fully
effective in tension; i. e., the
sheet up to a line halfway be-
tween the stringers is added to
the stringer proper when com-
puting the cross-sectional area
of the stringer. This aswmp-
tion is obviously somewhat nn-
safe and should be modiiiedwhen
the stringer strmses are high.

2. For a sheet cmrying com-
pression in addition to the shear,

remembering that this

von K&rmhn’s formula for effective width was used
in the form

2w=1.9
J

E
;t

w-here w is the effective width (on one side of the
stringer) and u the stress in the stringer. This formula
is probably always conservative in the range in
question.

COMPARISONBETWBENTEST ANDCALCULATEDRESULTS

In order to check the validi@ of the method thus far
developed, a test specimen was built to represent a
structure corresponding to figure 1 (a). A sketch of the
actual test specimen is shown in figure 6. Pin-end steel
bars (not shown in the figure) spaced 3 inches apart
were used to separate the edge stringers from the cen-
tral stringer and to take up the transverse component
of the diagonal-tension field that developed under load.
In each bay between these bars, the strains in the
stringers were measured with 2-inch Tuckerman strain
gages on both sides of the specimen. This precaution
proved necessary because the stresses on the two sides
differed so much at some stations that readings on only
one side would have been almost useless.

The load was increased from zero to the masimum
of 4,800 pounds in five steps. With a very few minor
exceptions, the points for any one gage fell on str~ight
lines. For each station, the results obtained on the
front and the back of the specimen were averaged and
the average valuea are plotted in figure 6.
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The calculations were made for the two different
mm.unptionsof the shear stiffness indicated on the fig-
ure, The second assumption of (3,=%(7 in the top part
was based on the experimentally observed fact that one
well-developed diagonal-tension fold showed in the top
of the panel on each side, in agreement with the cal-
culation showing that at the maximum load the shear
stress in this region was about six times the buckling
stress.

The second assumption gives perfect agreement be-
tween calculated and test results for the stress in the
central stringer. The agreement is not quite so good
on the edge stringer, the discrepancy occurring chiefly
at the root. Several explanations of the discrepsmcy
may be offered. An error of several percent may be
caused by an error in the value of E assumed to convert
strain readings to stress readings. The simple theory
used may bred down h some extent near the root and,
finally, jig deflection may cause errors. The steel
triangle used on the lower end is not a rigid foundation,
and a slight elastic deformation of this, steel triangle
under the edge stringemwould relieve the edge stringem
of some load and throw it into the sheet and possibly
into the central stringer. A deformation of about
0.0003 inch would be sufficient to make the calculated
stringer stressesequal at the jig end. Undoubtedly the
assumptions of effective areas, effective shear stdbess,
and jig deflection could be varied within their possible
limits to give a much better agreement with the experi-
mental points.

A similar analysis was made for the panel tested in
compression as dcacribed in referenca 2. The results
are shown in figure 7. It will be noted that fair agree-
ment with the experimentalpoints is obtained by assum-
ing that the effective shear stblness is only 0.2 the shear
modulus, in marked contrast to the tension panel. The
curves calculated with (3.= (3 are also given to show
the extent to which possible variations in f3, affect the
stringer stressc9.

BEAMS WITH ONE LONGITUDHUL

BEAMOF CONSTANTDEPTH

The simplest case of a beam subjected to shear defor-
mation of the flange is shown in figure 8. For simplicity
of the sketch the flange material on the side not under
consideration is assumed to be ccmcentratid at the shem
web. This assumption does not influtmce the analysis
when the cover is flat.

I?or convenience of discussion, the material concen-
trated at the top of the shear web will be referred to as
tbe “flange” throughout this paper, while the stringer
attached to the cover sheet will be referred to as the
‘lon@udinal.”

It M again assumed that the longitudinal is cut along
the line of symmetry (fig. 8 (b)). The force acting on

this halved longitudinal is denoted by FL, the force on
the (tension) flange by F~. The shear force in the web

(a)

F.

(w
~OUEE 8.—B33m withfitCOWIondOllf!]Ol@9dh9~

is denoted by &; the shear force in the cover sheet,
by S’c.

The governing equations are

dFp=SW$%c (31L)

–dFL=dSC (3b)

dr= –$j(u~-u~)dx (3C)

with the auxiliary equations

_Fr. ~. &=P; dsc=,tdx
“’–x=’ ‘L=AL’

The solution of the resulting differential equation is
given in appendix B, Case 3 (a).

COMPARISONBETWRRNTEST ANDCALCULATEDRRSIJL’IY3

The test panel that had been used in the previously
described tension test was slightly modified and
attached to two duralumin I-beams to form an open
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box beam. Figure 9 shows photographs of the beam
with the strain gages in place for a test run; @e 10
shows the test set-up. The cross section of this beam
is shown in figure 11.

It shoald be noted that the cover sheet and the longi-
tudinal were not attached to the bulkheads except at
the root. The flange material of the I-beams (includ-
ing the cover strips riveted to them and the sheet
material effective in tension) wwsreplaced, for the pur-
pose of analysis, by equivalent concentrated flanges
with a centroidal distance of 2.80 inches (effective depth
h of beam, fig. 8 (a)). The calculated stresses are
therefore valid for the flange centroids. For compari-
son with the measured stresses, the calculated flange
stresses were corrected to the outside fiber stresses

3“-2:W”’lh CYlmlRel-’f ‘
&UWlI-bin bvlktread

PmuRBlL~ ractienof test km.

under the asmunption that plane cross sections remain
plane for the I-beams with cover strips.

Figure 12 shows the experimental points, the curves
calculated for three different assumptions of the shear
stiffness, and the stresses crdcnlatsd by the ordinary
herd.irg theory. It can be seen that the experimental
points group fairly well about the curve for ~,=% G,
particularly when this curve is corrected for an esti-
mated jig deflection by the formula in appendix B,
case 2. Close to the root, however, discrepancies are
again observed as in the case of the temion panel.
The high flange strew at the station nearest the root
may perhaps be explained by nonlinear stress distri-
bution in the I-beams caused by the method of attach@
them to the jig, which was not designed for this test.
The reduction in shear stitb- of the sheet as compared
with the stiffness developed by the same sheet in the
tension panel can be ascribed to numerous inii%l
buckles present in the beam but not in the tension
panel.

Inspection of iigure 12 shows that very large varia-
tions of shear stitbss have only a rehitively small
influence on the bending stresses. This result is due
to the fact that, even when the shear stiflmm increases
to infinity, the bending stresses never exceed a finite
Ii.mitingvalue. k many ach.ud structures, the shear
stiffrmm provided is sticiently lmge to permit the
limiting stress to be approached within a few percent.
Praoticrdly speaking, this fact means that the shear
stiffness need not be very accurately known to obtain
the necessary accuracy in the bending stresses.

BEAMOF VARIABLEDEPTH

In a beam with variable depth, the only change in the
equations is introduced by the fact that the vertical
components of the flange forces balance part of the
applied shear, so that the shear in the web now becomes

JS’W-=Sa-# (tan p+tan 7) (5)

where /3 and 7 are the angles of inclination of the
tension flange and of the compression flange.

The analytical solution for a special case of a beam
with variable depth is given in appendix B as Case 3 (b).
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CONSTANTJ3TBE3SSOLIJITONFOR BEAMSWITH ONE
LONGITUDINAL

The analytical solutions presented thus far, together
with the triahnd-error method, are reasonably ade-
quate for dealing with beams having one longitudinal,
There appears to be but slight possibili@, however, of
extending these solutions to the practical cases of beams
with a number of longitudinal. An approximate
method will now be developed that crm be extended to
such beams. The method will tit be developed for a
beam with a singlelongitudinal because comparisons can
be made with the exact solution to gain some idea of the
reliability of the approximate method.
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The approximate method is based on the following
reasoning. It is the aim of the designer to dimension
the structure so that the stress in it is uniform for the
given loading. For several reasons this ideal is never
reached, but there is usually an effort made to taper the
dimensions so as to approach the dimensions of the ideal
design. Now the solution for constant stress along the
span can be very easily obtained. It is possible, there-
fore, to consider the actual condition as a super-
position upon the ideal case, which can be calculated
exactly, of some additional disturbing cases or “faults.”
These faults can be calculated only approximately, but
if they are of minor importance compared with the ideal
case, the resulting error of the total solution will be
small.

The detailed development of the method is as follows:
The fundamental equation

dr=-&u,–uJ-kc (6)

can be integrated once, if LWand uL are constant M
assumed, to give

s(a,–..) ‘Q&=~
“= E% 1)

(7)

where ~= is the shear stiffness averaged over the
distance z = Otoz=zj andthez origin istakenatthe
root. Integrated again to give the total shear force in
the cover sheet

scq-;TJ&=K,(aF- u.) (8)

l?or example, if (7. and t are constant along the span,

Equation (8) furnishes one relation between u~ and u..
One more relation is needed to complete the solution.
There are infinitely many conditions born which to
choose this relation. At any station along the span, the
internal bending moment should equal the external
bending moment. The root section has been chosen
becrmsein a number of trialsit always proved, by far, to
be the beet choice. Equating the internal and external
moment (applied at the root) gives the relation

(uFAFo+u’L&)h=Mao (9)

Now remembering that

s.= UL&

equations (8) and (9) can be solved for the bending
stresses

M&I
“L=h&’i#~+~&.’iF,+A~]

(lOa)

Mo(&+&)

“F=ho[fi,#q+~,(~Fo+&)]
(lOb)

Substituting equations (lOa) and (lOb) into equation
(7) gives

xGzMO

‘=4’,021+”2)1‘lOc)
Equations (lOa), (lOb), and (1OC)constitute the “pure
constant-strea9 solution” for a beam with a siqgle
longitudinal.

The internal bending moment at my station along
the span can now be calculated

MM= (urA,+ uLAJh

and, in general, this internal moment will not be equal
to the applied moment Ma. This difference constitutes
the first fault of the constan~stress solution and will
be called the ‘$noment fault.”

In order to remove this fault, additional (corrective)
bending moments must be added, which are at any
station

iW=Ma–Mti,

the prime denoting corrective moments. The stresses
caused by these corrective moments must be computed
and added to the stresses of the pure constant-stress
solution.

The method of computing the stressescaused by the
corrective moments will be approximate and arbitrary
as thus far no exact solutions of this problem have been
found. The following method was chosen because the
underlying assumption is the most obvious one and
because the method is very convenient, eliminating the
necessity of computing the internal moments, the cor-
rective moments, and the corrective stressessepwately. .

From equations (lOa) and (lOb) it follows that the
ratio

(%)0=’0=(’+%9(11)

The assumption is now made that this ratio remaius con-
stant (r=ro) along the span and that it holds not only
for the stressescaused by the “ideal” moments but also
for the stresses caused by the corrective moments.
Under this assumption, the direct.stressw at any station
are given by

“F=’’<:*)

(12a)

“’=’’’(%3(12b)

From these stresses the shear stresses axe obtained by
using the fundamental relation (2) and iutegratiqg horn
the root toward the tip

Y‘r= ~ g(u,–u.)dt (12C)

The moment fault has now been removed; that is, the
internal moments equal the applied moments when the
stresses as given by equations (12a) and (12b) exist in
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the flange and in the longitudinal. But equation (12c)
follows directly from equations (12a) and (12b) and the
stresses given by (12a) and (12c) will not, in general,
fuliill the fundamental equation (3a) of equilibrium of
the flange element. Equation (3a) requires that, for

.6

.4

G

2

0 .2 .4 .6 .8 f.O I-2 1.4
&/Az

FIQm13.—c0iT40n factor, cl

equilibrium of the flange element, the increment of
shear force in the cover should be

where the additiomd subscript S denotes the increment
required for static equilibrium. The increment of shear
force actually developed is

M&= TtLb (14)

where the subcript -E refers to the fact that this incre-
ment is provided by the elastic deformations of the
flange and the longitudinal. lhilure of the shem-force
increments given by equations (13) and (14) to be
identical constitutes the second fault of the constant-
stress solution, the so-called “shear fault.”

StrLticequilibrium for the flange elements would be
restored if corrective shear-force increments were in-
troduced equal to the di.flerancesof these two sets of
shear-force increments

Asc’=AscsJ-Asm (15)

where the prime a@n denotes a correction. The cor-
rective shear force i%’ at any station is obtained by
integrating from the tip to the desired station, the force
being zero at the tip. The corrections to be added to
the stresseswould then be given by

s.’ –s.’ A&’
““=x, ‘L’= AL “=s

(Care must be taken in determining the signs of the
corrective stresses. The safest method is to compare
their direction with the direction of the stresses given
by the pure constantitr- solution.)

Introducing these corrective stresses would restore
static equilibrium but would again upset the basic
elastic relation given by equation (6). A compromise
must therefore be made by wing only a fraction Cl
of the correction

These stress corrections are added to the stresses
obtained horn equations (12a), (12b), and (120) to
obtaiu the tifd corrected StrW133 UFcom, ULCO,,,~(1

rem. .
Values of Cl may be established by comparing a

number’ of exact solutions with the corresponding
constant-stress solutions; an averaged curve is shown
inilgure 13.

In order to gain some idea of the range of applicability
of the constantitress solution, a seriesof relatad beams
was calculated. The characteristics of three of these
beams aregiven in tablelI The tit set of calculations
was made by using the analytical solutions given in
appendix B for beam A and by using the trial-and-
error method for beams B and C. The second set of
calculations was made by using the constant-stress
solution as described. The results of the crdculdions
are shown in figures 14 to 16.

For beam B, the stresses given by the pure constank
strew solution are also shown. Beam B is a constanti
stress beam when analyzed by the ordinary bending
theory and has. zero moment fault. The complete
analysis for this beam is given as an example in
appendix C.

It is to be expected that, in general, there will be
smaller d.Herences between the constantistress solu-
tion and the exact solution for beams with smallmomaut
fault than for beams with large moment fault. This
expectation is borne out by the results. Beam B,

4

stoths

FmmB14.-Stresw h tfmn A.

which comes close to the ideal case, shows smaller
difbrencea than beam A, which is further from tho
ideal case because the areas AF and AL are constant
along the span. Beam C, which corresponds to on
~ctual case, as far as variation of AF, A~, t, and h along
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the span is concerned, shows also good agreement for
the bending stresses. The agreement is not quite so
good for the shmr stresses.

Considering all the factora involved, it seems safe to
resume that the constant-stress solution will give
satisfactory results in practical case9 for the maximum
stresses,provided that the correction introduced by the
shear fault is not larger than about 20 percent of the
stress given by the pure cmstmhstress solution.

BEAMS WITH MANY LONGITTJDINALS

YOUNGER’SSOLUTION

Actual whg structures we built as box beans with
mrmy Iongitudimds, and the depth of the beam as well
as all cross-sectional areas varies along the span.

The first attempt at obtaining a solution for a multi-
stringer beam was made by Younger (reference 4). He
considered the limiting case of infinitely many longi-
tudinal (i. e., a plate cover as shown in @. 17) and
assumed the box to be of constant section; for the dis-
tribution of the bending moments he as-smyeda cosine
law.

Younger’s solution and its extension to arbitrmy
moment curves are given in appendix B. It should be
noted that this solution does not fidtill the equation of
equilibrium for the flange elerrmut (the differential

U&r
Lw,w I I

; — Exac> solutbn
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equation does not hold along the flange) so that a shear-
fault correction is necws~, as &cussed in connection
with the constant-stress solution for the beam with a
single longitudinal.

CONSTANT-STEMSSOLUTION

The usefulness of Younger’s solution is so limited by
the amumption of constant crow section along the

““’”R=FF+

Sfations

Fmum 18.-stEse3 inIE3mc.

span that a more general method appeared desirable.
The constant-stress solution was developed to fill this
need of practical stress analysis.

The principles of the constantitress solution have
been discussed in detail for beams with a single longi-
tudinal. The extension of the solution to beams with
many longitudinal is given in appendix B. The
practical proc.echmeof applying it is essentiallyidentical
with the procedure outlined for beams with a si@e
longitudinal The constant K, is computed and used
to compute the c.cmstsmt.& for the root section, using
equation (B-27). The stressesat a number of stations
along the span are then obtained by the formula

M cosh K,y
u=

(

(17)
h A. cosh K&+ * SinhK@

where y variea from y= Ofor the center line of the beam
to y=b for the flange. The shear strew in &e cover
sheet next to the flange is obtained by integrating from
the root outward the expression

(1s)

where u~ is obtained horn equation (17) by setting
y=b. Equation (18) is obtained from equations @L20)
and (B-25).
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The increments of corrective shear force are obtained
by using equations (13), (14), md (15). After the
integration of (15) in horn the tip to obtain the correc-
tive shear force &’, the correction to the flange strew
is calculakd by the fit expression of (16); the correc-

FIQUE1317.—NotationU@ forMaDM withOrthOtTO@C COVETP18tw

tion to the shear stress is calculated by the last ex-
pression of (16).

The calculation of the correction to the stress uLis
somewhat more complicated because it varies along
the chord. The total force on all longitufim, tig
equation (17), is given by

where Umdenotes the stress at the center line of the
beam obtained from equation (17) by setting y=O.
In rmordsnca with (16), only a part of the corrective
shear form is applied so that the corrected total force
on the longitudinal is

FL_=F~- CW’ (20)

Assume now that the corrected stresses in the longi-
tudinal are distributed chordwise according to the law-

Umm=%Lwrrcosh Yy (21)

The unknown Y can be found from the equation

which is based on the premise that

ULNW= uFmm

for y=ti. After Y has been found, the
at the center line is found from

VmWw=GF.nsech ~

(22)

corrected stress

and equation (21) can then be used to calculate the
stresses at intermediate values of y. The right-hind
side of equation (22) is the ratio of the average stress

in the longitudinal to the stress in the flange. In
general, this ratio will be less than unity; however,
figure 16 shows that for a beam with a single longi-
tudinal the stress in the longitudinal may be larger
than the stressin the flange over a part of the span, and
similarly the right-hand side of equation (22) some-
times may exceed unity. In such u case, equations (21)
and (22) may be replaced by

aCOn=(r@Cnr(2-cosh Yy)

(2-*~) i%.,.

(2–cosh Yb) ‘z

After Y has been found, the correctad
center line is found from

(210)

(22rL)

stress at the

‘Faorr
UCLCO.= (2—cosh n)

and equation (21a) can then be used to calculate the
stresaeaat intermediate values of y.

The solution of equations (22) and (22a) can be
effected by inspection of tables. For pract.i~ PUG

poses it should be sticient to use the curve given on
figure 18. ‘

As examplea, beams A and B were analyzed under
the assumption that longitudinal with the total cross-
seCtkmd area AL are distributed uniforndy along the
chord. The rcs.dts are shown in figures 19 and 20.
It will be seen that the stress at the center line of the
beam is very low. If all longitudinal me of the same
cross section,.they must be designed to the stress in the
iirst longitudinal adjacent to the flange, Consequently,
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the longitudinal near the center line are very in-
effectively used. In this connection, attention might
be called to the fact that the longitudimds need not be
of the same cross-sectional area along the chord. The
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assumption of AL being uniformly distributed may be
fulfilled, for instance, by using longitudinal of large
cross-sectional area but widely spaced near the flange
and longitudinal of small cross-sectional area but
closely spaced near the center line. Although such an
arrangement would not increaae the over-all structural
efficiency, it might under Certti conditio~ offer
manufacturing advantage.

MJ3CHANICALANALYmm

The constam%tress solution is ahmys approximate.
When the moment and shear corrections me huge,
doubts may arise M to whether the solution is suf6-
ciently accurate. It might be advantageous to con-
struct a mechanical analyzer to deal with such CS.SW.
One possibility for such an analyzer would be actually
to build units representing the mechanical model
sketched in figure 1 (b). The springs might be canti-
lever springs, so that their stMnessescould be varied by
changing their lengths. Each unit would reprcaent
one bay of the trial-and-emor method of solution and
would have one spring to represent the stringer stiffness
and orie spring to reprcaent the shear stiffness of the
sheet attached to one side of the stiilener.

The chief difficulty in the design of such an analyzer
would probably be in reducing the friction between the
units and the guides necessm-yto dine them. A fairly
large number of units would be necessary to represent
n wing cover, which would mean a fairly expensive
instrument. This disadvantage is counterbalanced by

u 7

Stations

FIauRE19.-S-h bmmA withALnniformlydbtribmkdalongchord.

the possibility that the instrument would offer in a
comparatively short time quite an exact analysis,
including the effects of bulkheads and of yielding
supports. The main errors in this solution’ would be
those caused by the iinite length of bays.

.

CONCLUSION

The art of strem-wmlyzi.ngshell structures is of recent
@in, and any methods of analysis proposed must go
hrough a process of trial and development.

Development of the method of sheardeformation
malysis is desirable in several directions; e. g., exact

FICVJEE 21.-Str@w h tarn B with AL uniformly dkhibukialongohord.

solutions should be found to replace the constant-stress
solution and methods should be devised to calculnte
the idluence of bulkheads.

Rough approximate calculations on bulkhead efIect
can be made by assuming that all the longitudimds
we relocated at the center line of the beam. For
beams with a single longitudinal, the effect of bulk-
heads can be calculated. A series of systematic com-
parisonsbetween the extended solution of Younger and
Case 3 (a) of appendix B indicates that for a certain
range the single-longitudinal assumption may yield
wceptable apprmdmations when used in conjunction
with suitable correction factors. The comparisons
are not given, however, because they might be mis-
leading in view of the shear fault of Younger’s solution.
Calculations made thus far indicate that in practical
caseathe effect of the bulkheads is very small.

It should be emphasized that analyzing shell struc-
tures is an art rather than a science. The arithmetic
of analyzing highly redundant structures can be re-
duced to manageable proportions only by making
assumptions that will be valid only within a certain
range. This fact leads to the unfortunate, but inevi-
table, conclusion that the analysis of such structures
cannot be made entirely by handbook and formula but
must be guided by engineering judgment.

LANGLIOYMEMORIAL AIIRONAUTICAL LAROFATORY,
NATIONAL ADVISORY Cow~wa FOR AERONAUTICS,

LANGLEY I?IELD, VA., June 8, 19$7.
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LIST OF SYMBOLS

A, cI’0S5SeCtiOIldarea (Sq. in.).
E, Young’smodulus(lb. per sq. in.).
F, internal form (lb.).
G, shear modulus (lb. per sq. in.).
K, constant.
L, length of panel or beam (ii).
M, bending moment (k-lb.).
P, externslload (lb.).
S, shear forca (lb.).
b,spacing of dringem (in.). (see figs. 3 and 4.)
b,halfwidth of beam (ii). (See fig. 8.)
c, camber of cover (ii).
h, depth of beam (in.).
t, thicknessof cover sheet (ii).
u, displacementof point (in.). (%3 fig. 4.)
w, runningload (lb. per in.).
y, shearstrain.
U)H (noti) stress (lb. per sq. in.).
T,sh~ - (lb. per sq. in.).

APPENDIX A

Subscripts have the fo~oa s@Iifi-CIX

A, loaded stringerA shown in figures1, 2, 21, and 22.
B, udoaded stringer B showninIigurea1, 2, 21, and 22,
C, cover sheet.
F, tige of beam.
L, longitudinal of W.
W, shear web.
a, applied shears and bending momenta.
e, effective.
o, rootsection.
c, oompremiom
t, tension.
intj internal.
m, Correoted.
S, static equilibrium.
Z?,elastio equilibrium.
CL,centerline.

082



APPENDIX B

SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SYMMETRICAL STRUCTURES OF CONSTANT
CROSS SECTION

SIGN CONVENTIONS

I’orces and stresses in stringem are positive when
tensile. Shear forces and stressesin the sheet are posi-
tive when caused by positive stressesand strains in the
loaded stringer A in the crtseof axially loaded panels
or in the flange Fin the case of beams.

OASE1—TEREESTRINGERPANEL ON RIGID FOUNDATIONWITE
AXIAL LOAD

The two possible cases shown in iigures 21(rL)and
21(b) cm be mathematically treated by taking on~
half the panel, as shown in figure 21(c), which also

[

(a)

Z4z

P-I

ZLzz

A

—

-/-- b
P

:/

r

(c]
FIGURE 21.—AxlaUY kaded panel%

givea the notation to be used. The derivation of the
fundamental equations is given in the main body of
this paper. Slightly modified for the purpose of deriv-
ing the basic dMerential equation, these equations are

l-t i-t
‘— and uB’=——‘“ A. AB (-B-1)

+ij&d- UB) (B-2)

where the primes denote differentiation with respect to x
Differentiating equation (33-2) again and substituting

into the result from equation (J&l),

‘“-’%(+++)=0
The boundary conditions are

at z=” , 7=0

P
at

‘== ‘ “=z and “’=0

The result is

P Q. Sinhlzi
‘=x ~K iiii~

‘B=m%m(%%%
P A.

u.4=~–AyuB

(B-3)

(B-4)

(B-5)

where

(B-6)

Enreference 2 the formula

Yb=:rosh ~’–t~ p= a ~+1]

where

k given for the special case where the area of the edge
stiilener is twice the area of the central stMener. Tak-
ing account of the dMerences in notation and coordinate
systemsused, this result agreeswith the general formula
given under (B-5). “

It should be noted that the final formulas (33-5) be-
come invalid when either t or 0, approaches zero be-
causein these cases the equation (33-3) becomes invalid.
The solution for such cases is obtained by using the
fundamental equations (B-1) and (B-2) directly.

An analogous procedure must be used for Cases 2
and 3.

CASE2—THRBESYRU+GERPANELSTRAIN= BYMOTIONOF
SUPPORTS

The dif3?erentialequation for the case of figure 22 is

D1mII
*J- .

A B

J
z

(a) m (c)
FIGVBE 2.1-Pm& @OMd by IUOtIOII Of Qpp3ti.

the same as for Case 1. The bounda~ conditions are
now:
at z=O , IJA=Oand u’=0

at ‘== ‘ ‘=; “=’0 1
The result is

cosh Kiz
‘= TOcoshKL

1
# Sinh EC

‘d= —‘“~dCOSh~ I
t Sinhlrx

-“’=’0=’~ I
where K has the same meaning as in &6).

683

(B-7)

(B-8)
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CM3E s—OANITLB VER BEAM WITH ONE STRINGER

(a) Uniform depth, conoenlm=d.edload at tip.
(b) Depth decreasing lineally to zero, uniformly &s

tributed 10ti.

Figure 8 shows the notation used for both cases
(Note that the z origin is at the tip.) The funds
mental equations are for Case 3 (a)

P
UFIAF=X—Tt

UL’AL=Tt

1-~—––g&-uL)

which gives the &&rential equation

‘“-’%k++i)+.%~’o
The boundary conditions are

.
at z=Oj UX=O,and UL=”

at z=L, T=O

The result is

(x#inh EC
‘L=h(AL+A,) cosh KL)

““M; )
z

— ULAL

(33-10)

I(B-11)

(33-12)

J

where K has again the same meaning as in (B-6) with
A= and AL substituted for A. and A~.

In Case 3 (6), wLj2 is substituted for P; h in this
case is the depth at the root.

~GURE 23.-Cantilever keam with mnc%ntratd bad not at tip.

The case of a beam loaded by a concentrated load
not ‘at the tip is a simple problem in indeterminate
structures. The beam is cut just outboard of the load
(fig. 23) and the stressesin the cantilever part are cd-
culated (Case 3 (a)). From these stressss,the diskn-tion
of the beam section at the cut; i. e., the relative dis-

placement of the tips of the flange F and the longi-
tudinal L, can be calculated. A system of forces X
isthenapplied to equalize the distortion of the crm-
tilever tip and of the inboard end of the “overhang,”
utilizing the formulas of Case 2.

CASE4-cANTnEvER BEAM WITH ORTHOTROPIC COVER PLATE

Younger’s solution for a beam of oonstant seotion,—
The beam and the coordinate system used are shown in
iigure 17. It SW be n.ded thui tha x direction ti
apposi.feto thatumd in tie 3 and b.

Under the assumptions that the transveme stressw
and strains are negligible (Ji’oisson’sMio equal to zero),
andthat (76is independent of E, the d~erential equa-
tion of the cover is

@-13)

where u is the displacement of any point on the cover in
the x direction.

The bound~ conditions are

at X=o, ‘=0
‘=0 ‘d@ I

I(B-14)

by Younger (reference
4, pp. 3647). For the solution he aas&ed” that the
external bending moment (on the whole beam) is
given by

‘=MO Cosz (B-16)

and obtained for the longitudinal stressin the cover

MOCOSh& ,~s ~
m=

(
4 Z+&&_&)2h A~ cOsh#&+ b

andfor the shear strew

M,(3 sinh&skl z?

‘= hE
2K4 cosh &+ ~%nh&

where K is deiined by ~

(B-16)

@-17)

Extension of Younger’s solutiono-Younger’s solution
can be somewhat extended. The external bpnding
moment can be represented by a superposition of
3everal terms:

5%c
M=M1 COS~+M3 COS~+ MSCOS~

Therethe m’s are odd integers.

@-18)
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The vrdues Ml . . Mm are chosen so that the sum of
the terms equsls the given external bending moment at
m points other than the tip, where it is assumed that
M=O. In order to make comparisons with Case 3, the
bending moment caused by a tip load wss expressed by

( a-z
M=PL 0.821 COS~+0.101 cOS3~

)
+0.045 Cos g+o.033 Cos$ (B-19)

The stressescorresponding to the mth term are given

The assumptions of Poisson’s ratio being zero and (7
being bdependent of E are, strictly speaking, incom-

patible. The physical picture conforming to these
assumptions is not a plate but a system of stringers
carrying only longitudinal stresses tied together by a
sheeti carrying only shear stresses. This picture is
realized very nearly in practice by a skin-stringer cover,
the only difference being that the total crossaectional
area of the strhqym is not necessarily equal to the area
of the sheet, m in the c~e of the plain cover sheet. All
the equations written for the plain cover sheet apply,
therefore, to the skin-stringer cover if only (B-17) iE
replaced by

IP=R~ . (B-17a)

where R is the ratio of sheet area to area of longi-
tudinal.

Constant-stress solution.-The coordinate system is
that @own in figure 17. Under the assumption that
a= constant for each longitudinal, the fundamental
relation

dr _ @,A~
ok EAy

(0-20)

can be integrated once to give

JAn z
T.=~y ~ Q&–;;y .–—3 (&21)

where ~=is the shearsti.ilhessaveraged over the distance
CC=Oto Z=Z, Integrating again

h any given we this integration can be performed
md the rcault is

8C=K,G (B-22)

where

NOW

sSc= ~“+dy
(see fig. 24) or

ds ._wAL
dy b

r...
I
I1~-..
II
II
II
/! &
II
II
II

II
II
II
II

:---

@-23)

~13UEE 24.—Freek3y d&r@.m Of WV6T Pht&

Differentiating (B-22) and equating to @-23)

@-24)

assuming that K, is independent of y.
The bound~ conditions are

(1) at y=O, T=O for any z.
du

‘herefore fi=o
(2) at any desired refer~m station R,- the internal
moment equals the external moment L&.

The solution is

M. cosh &y
(B-25)

“;(A, cosh ~b+$&hKab)

G.
T= qKs tad &y @-26)

where Ka is deiined by

&l=&,=& (B-27)
–azt&

It may be noted that if f3. and t are not varied along
the span, the constant KS is identical with the corre-
sponding constant of Younger’s solution mcept for a
10 percent difference in the numerical factor, namely,
.@ against 7rJ2.
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APPENDIX c

ANALYSLS OF BEAM

The dimensions and the loading
shown in table II.

B

of the beam are

ORDINARYBENDING TEEORX

M ~ 800”()()()
o-p=u~=u= h(A.+AL) ‘24(1.875+1.875)=

31,100 lb. per sq. in.

CONSTANT3TRES9 SOLUTION

Siice (7. is assumed constant alo~m the span, ~== G,
and, from equation (7),

T== (a~— UL)
%

From equation (8)

=4.35 (u~—UJ
K,=4.35

From equation (lOa)

2,800,000X4.35
‘L=24[1.875X 1.875+4.35(1.875+1.875)]

=25,550 lb. per sq. in.

From equation (lOb)

2,800,000(1.875+4.35)
‘F=24[1.875 x 1.875+4.35(1.875+1.875)]

=36,500 lb. per sq. in.
6S6

Substituting in equation (7) for the shear stress at
the tip

rmaz=(36,500–25,550) 280~0”2=25,560 lb. pOr sq. in.

The calculation of the shear correction is shown in
table III.

TRIM-AND-ERRORSOLU’TXON

Take AX=40 in.

SAX WXLAXWL
h—=x=2z&=

71.4}:2:x40= 16,670 lb.

~’=16,670–AS0

0.2x40 (uF–u.)=o.333(uF&.)AT=% (UF– m) = ~

A typioal cycle of the calculation is shown in table IV.
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TABLE I.—ANALYSIS OF TENSION PANEL WITH SHEAR DEFORMATION
(

,4,1 -O.403
All-o. m

t-o. o16
b4. 131

By trkd-and~rmr motlwd I By formula 1

‘h””n* ‘b$h)* 3 “ ld!z~(lb.) (lb./sq. h.) (lb.&. h) (lb./sq. k) (lb./sq. h.)

o_.. _... _____ .. ..-.. - &ml 0 -------------- .. .. ... .. ...- --------.----- -------
376 -.---.-- ._.__v’!!. __.1 .............- -------------- --------------

L_.-. -__... - ..-.-... ~cm
373 .._. _x’!_ __._.iE; _.__:_g_-

1, m .___.!f’fl -_-Er
210 ..i-gii. ___.Ml __::. .---Y? - .-.--!?*- ------------.

qom

‘L . . . . . . . . . . . . . . . -------- 9s6 ..__.+:- --.---- -------qKri- ---–—z@- ‘--”-i~iW-
112 ._:._. ._._. -?-!. __E- .___x!- ._.__:?l --------------

3.-.. _ . . .._...- . . . ----- 1, m
m -----.------.- ------------ -_-_-.._---

m -___.!tii. ..-.--–
m ..-.. -.. ..___x!. __?- _..__! .!rn- ____?y- -------------

4.-.. __.._ ._. ..-..._ ~042
m .----:-;- _..__w- -_._._Y_

329 . . ..-. --.-jG- --------
29 .._._ - __.._Ml __?!’!- _.__H ..____:!- -------------

h . . . . . . . . . . . . . . . -------- ~ 618
a ____:___ .__+; - ._+_

22! ._--------&- -.--_i-
9 .------- __.._;g. __:- .___Y1 . . ..___g -------------

$933 ,

cL__________ .-..-... 1, cm 1$618 189 . . ..-. --l_- -–----- -------5;tm- ------–imr -----—--r

1 Appandlx B, Caso 1.

TABLE 11.-CHARACTERISTICS OF BEAMS
TIMkamnam &mnnadtObo half M3msa9sb0wnhflu.8 (a).

.

AJIbeams:
h-24 hat root.
h=o at tfP.

(7./l&o2
I 1

I--IT
Ar=AL
(Sq.‘L)

Beam

Rmt TIP

A..__ L 676 L 876
B------ L S76 o
C’___ LEW . 47Q

. .
b.2ifn.
Z-%6 im
W-7L4 R@.

I
(IL

c“

Root Tfp

0.040 awo o.
.m 0.

:M .010 0.

TABLE HI.— CALCULATION OF SHEAR-FAULT CORRECTION FOR BEAM B

AZ40
FP.FAP-39,LW3.4 746,

+
A&8= Sw&AF AscE=rtAz

AS4’.ASC.5-A%B

iii i ~ !’EIsFrrl‘------- -5- ---Iiii- ‘------ ‘-------- ‘------ ‘------- --;--- ‘------ –z5;iij- ‘------- ‘------ ‘------- ‘-------- ‘------– ‘-----–&m 4,140 -------- ..-7-=- -Xy-ti– .-ii.%. ..i7.ti_
.Zm -.L-ii. -------- -----–- 9,SSI .---.-- ------- -------- _..-.. - -------- 4,140

–xl _.__ -__:___ ._.:___ ._l._ .._’___
EM ----- . . . . . . . . -------- 19 WI _:__ ------ . . . . . . ------------------- &ml

9,41m –~ MO ..-...-. .----ti_ ---------------------------
J& .E.G. ----------------- 26,4c5J _:__ ---------------- ------ -------- l,bw

1.$ w -------- 9,8C0 &sea rA760 1$ m -&3a3 -------- --.:%- _.:?- w. .-?.Y.
:. -icii. ..H!. ..-._ .- 39, m ------ ---------------- ------- ------- -l, ml

9,133 ~400 –~mo -------- -zi.Gi- -.--H ..?-Y_ _??_?.
L 340 --.-–. ..:HJ -iGz- 49, W3 l.._ ------------------------ -------- +320

–m ------- .-.:.-. .X!:. -?? --?-:?_
;fcg -a-z. ._Gn.- ------- %ScD3 ------- ..-–.- _.w- x?!. . . . . . . . . +340 –I, wl

Lsm 2710 & lm ..- . . ..-. ---=m. . . . . . . . . ------------------
L 876 ---------------- ..----– q cm _:--- ------- _.-.-._ ---------------- –m

o........

1. . . . . . . .

2. . . . . ..-

3 . . . . . ..-

4. . . . . . . .

6........

6.._... -

7. . . . . ..-

m 0
2@3 . . . . . . . . ..-
240 .ms
ml -.--...—. .
m .ma
la .._.-:%_
la
140 . . . ..i.ti-.
120
100 ------------
@l 1.340
al . . . . . . . . . . .
40
20 ..+:-.
o .

I
-—--

I&lcm 41,840
..-. —— .——

-m Z2,0M
--. --. — -----
–2220 14ZKI
.-. —--- —— .-.
+ ml 1% bw
-.—.—- .. —— -
–~nl 7,cu6
-. —— -- --.—-

–10 5470
-- .-— —- —.-

l,4m &zm
.-. .-. — ——. —

TABLE IV.-TRIALAND-EFLROR SOLUTION FOR BEAM B

tti I AFr
i%.! (ii) ,(lbJ:. h) (lb.) I (if)(lb.&. ‘I.) (lb:lz.%) (lbJ&.in.) (lbJ&.fm) i$.!

=4-c’ “’ i “i “ “’~—._+-:--
---------

t

%733 –.
.-

. . .
........- ------------
.m &m __;

. . . . . . . . . ---.-.-..-.-
.7W &mo .-.-x

-------- ------------
L~ &ml _._ti

.---.--.- ---.----.---
L2L5 %2$4 -.-.ii

. . . . . . ..- ---....-----
L 486 3,130 ------ .-..----,.-. ..-.--.—.-..I

“ “ -----------

.-. .— - --- ------------ Qwo __.:_ _z.;_ _.G-& ::+;;:: --~;--- -–--$?ii
&im 1% Em ------------

9, m __w_ __.l...- ._-ii&- _._l___
-. —-----

,--. -.-. — ----------
--, 17Q

21,43 7,240
z, 740 ----------

------ ----------- 7, m +$ __:-:.. -.._:._.– . ...-.?!!.- ‘---i<-iiKi- -----&–i
‘,m m, m) ----------- 4, m . ...5_@_ ._--.-.-
------ ------------ &m __<-iG_ --&-_&_ --:-?-- ------------
,s23 2%6Z0 –.-.-----.- &sw –_+a- +:!:

~m ---Jy-- .-.-.–----- .-.-.------- ..--.j-%-- .---.--------.-.- -----------
,693 Zbm –.-~iE.- –.–.:..-
—---- — ----------
;053

Q 310 .+:.. ._.w.- _ . . . . . .._- . . . . . . . . ..-
~ml -.---..---.- 8923 _...5ib_- _..x!g

-. ..-. ------------ 13,640 _+_6-. __w!_ -_Ml- -.--....----
4% am 24, WI ------------ , 37,040 13am *W6 ---–.--.--- .-----––


